Although real-world
dynamics are often sparse,
most model-based RL still
learns dense dynamics.

But dense models depend the
dynamics of each state variable
on all variables and the action,
making them vulnerable to
spurious correlations.

In the real world, the next step
value of each state variable often
only depends on a few current
state variables.

Sparse dynamics models not only

generalize better than dense ones,
but also enable a state abstraction
that is task (reward)-independent.
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Given a high-level state space and action space, our
method:
1. learns a causal dynamics model from transition data
2. splits state variables into three types:

» controllable: can be affected by the action

: can't be affected by the action,
but affect action’s results

» action-irrelevant: all other variables

3. derives a state abstraction by ignoring action-
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